欧美黑人又粗又大的性格特点,国产农村妇女aaaaa视频,欧美高清精品一区二区,好爽又高潮了毛片免费下载

有關高鎳鋰離子電池正極材料分析

鉅大鋰電  |  點擊量:0  |  2021年04月21日  

三元材料是鎳鈷錳酸鋰Li(NiCoMn)O2,三元復合正極材料前驅體產品,是以鎳鹽、鈷鹽、錳鹽為原料,里面鎳鈷錳的比例可以根據實際要調整,三元材料做正極的電池相關于鈷酸鋰離子電池安全性高。目前越來越多的電動物流車采用了三元材料電池,這重要是由于三元系正極材料NCA具有能量密度高、循環壽命長、成本低、利于整車輕量化等優點,能夠有效解決城市物流最后一公里的問題,而且由此引發了電動物流車從磷酸鐵鋰向三元技術轉變的趨勢。


假如說前兩年高鎳三元材料電池還處于個別廠家和學界的研發階段,那么從2016年開始,高鎳三元電池的研發和生產已呈燎原之勢。


高軒高科在其年產10000噸高鎳三元材料項目通告中稱,其掌握了高鎳三元正極材料晶


面生長控制和快離子導體表面包覆改性技術,提高了高鎳三元正極材料的加工性能、克容量和循環壽命。


寧德時代總裁黃世霖在相關場合表示,寧德時代在材料上會逐步由磷酸鐵鋰/石墨、三元、高鎳三元/硅碳再到固態鋰、空氣金屬電池演進。十三五期間,寧德時代將致力于高鎳三元/硅碳電池研發,努力實現350Wh/公斤的目標。目前已經組織專門團隊,確保實現量產目標。


當升科技則對外稱,其NCM622三元正極材料已實現規模化量產,并得到國內、國際客戶的認可,被應用到新能源汽車動力鋰電池領域,產品供不應求。2016年七月,當升科技募資新建年產4000噸高鎳三元材料項目。


根據高工鋰電調研,雖然目前三元電池公司重要應用的還是NCM333和NCM523電池,但是NCM622已經進入了部分公司的材料供應鏈。隨著材料體系的高鎳化進程,預計2017年國內三元電池公司將開始應用NCM811和NCA材質,電池單體能量密度將200wh/kg向250-300wh/kg邁進。


https://image.ipaiban.com/upload-ueditor-image-20171210-1512905786337031753.png


(圖文來源:比克電池林建)


當前各大公司布局選材如下:


2016年公布的《節能與新能源汽車技術路線圖》提到了純電動汽車動力鋰電池的比能量目標是2020年350Wh/kg,2025年是400Wh/kg,2030年500Wh/kg。該目標與四部委提出的指標很接近,也在業內引發了熱議。我們梳理一下2016年媒體報道的各大電池公司的比能量目標和實現路徑:


比亞迪:三元電池希望在2018年做到240Wh/kg,2020年大概做到300Wh/kg。正極采用高鎳三元材料,負極采用氧化亞硅或納米硅。


寧德時代:2016年可以做到200-250Wh/kg,十三五期間希望實現350Wh/kg目標,材料體系為高鎳三元/硅碳材料。


國軒高科:2020年目標是300-350Wh/kg,采用高鎳三元正極材料,硅基負極材料,5V高電壓電解液。


比克:18650圓柱第四代產品(3.0Ah)普遍可以達到220-230Wh/kg,2017年第五代產品(3.6Ah)的比能量預計可以達到250Wh/kg。比克是較早鎖定三元材料路線的公司。


力神:正在開發200-250Wh/kg的產品,圓柱電池已經可以達到250Wh/kg,2020年爭取達到300Wh/kg,采用第三代富鋰錳基層狀材料和硅負極材料。


三星SDI:2016年水平為250Wh/kg,預計2030年達到350Wh/kg(可能采用了其他電池體系了)。


值得注意的是,寧德時代、天津力神、國軒高科三家電池公司在2016年還入圍了科技部重點專項,該項目的考核指標為:


動力鋰電池新材料新體系(基礎前沿類)考核指標:新型鋰離子電池樣品能量密度400Wh/kg,新體系電池樣品能量密度500Wh/kg。


高比能量鋰離子電池技術(重大共性關鍵技術類)考核指標:電池單體能量密度300Wh/kg,循環壽命1500次,成本0.8元/Wh,安全性等達到國標要求;年生產量力2億瓦時,產品累計銷售3000萬瓦時或裝車數量1000套這些重點專項的考核指標還對循環壽命、安全性能、甚至銷量和產量提出了要求,這對入圍的電池公司也是不小的考驗。


從所有公開的信息可以看到,我國各大電池公司實現300Wh/kg的技術路線可以歸納為:


正極材料:高鎳三元,或者富鋰錳基


負極材料:硅基材料


電解液:高壓電解液


隔膜:目前還是PP、PE為主,外加陶瓷涂層


引言


在環境污染和能源危機的雙重壓力下,尋找清潔的綠色能源是當今世界共同努力的方向。鋰離子電池在清潔能源中占有很重要的一席之地,特別是鋰離子電池作為動力源的汽車,近幾年發展迅速,針對全球能源和環境問題提出了一條新的發展道路[1-2]。鋰離子電池的性能重要取決于參與電極反應的活性物質,負極的發展速度要快于正極[3]。因此,研究鋰離子電池正極材料,對提高鋰離子電池性能和拓寬其應用領域具有重要的經濟意義和現實意義。


鋰離子電池具有多種正極材料,具有層狀結構的LiCoO2是當前重要的商品化鋰離子電池正極材料,其綜合性能優異,但成本較高、Co存在毒性,制約了其更大規模應用。LiNiO2晶體結構類似,成本較低且更加環保,但結構穩定性較差。高鎳正極材料(Ni80%)相比于傳統的層狀LiCoO2具有高比容量、低成本、長壽命等優點,是目前國內外的研究熱點,已逐漸進入商品化應用階段,被認為是極具應用前景的鋰離子動力鋰電池正極材料。


高鎳正極材料具有高比容量和低成本的特點,但也存在容量保持率低,熱穩定性差等缺陷,如圖1所示[4,5],使其商業化難度大。高鎳正極材料的性能和結構與制備工藝緊密相關,不同的制備方法與改性方法直接影響產品的性能。鋰離子高鎳系正極材料尤其是高鎳系的三元正極材料LiNi0.8Co0.15A10.0502(NCA)和LiNi0.8Co0.1Mn0.1O2(NCM811)是目前研究和應用非常熱門的鋰離子電池正極材料。因此,本文針對NCA和NCM811兩種較熱門的正極材料進行綜述,包括其重要的制備方法和改性研究進展,并進行兩者重要性能的比較。


1、高鎳系正極材料的制備方法


由于高鎳系正極材料對制備環境、制作電池環境、儲存環境(溫度、濕度、氧值)非常敏感,所以,尋找一套合適的制備體系,關于整個高鎳系正極材料的工業化都具有一定的參考價值。制備方法對高鎳系層狀材料的微觀結構和電化學性能有著較大的影響。常見的制備法包括:高溫固相法、共沉淀法、溶膠-凝膠法、噴霧干燥法和燃燒法等。


1.1NCA的制備


Cao等[6]采用常規共沉淀法制備了LiNi0.8Co0.2-xAlx02(0x0.2)正極材料。先將鎳、鈷和鋁的硝酸鹽配制成2mol/L混合溶液,滴入4mol/L氨水調節pH值至8.5后,再滴入氫氧化鈉溶液至pH值達到11,然后加入PVP分散劑,沉淀經洗滌、過濾、干燥即得Ni-Co-A1氫氧化物前驅體。按物質的量比Li/Me=1.05混合LiOH和前驅體,經600℃焙燒6h后,置于氧氣流中在750℃焙燒8-24h,獲得LiNi0.8Co0.2-xAlx02。750℃焙燒16h制備的NCA樣品顯示出160.8mAh/g的最高首次放電比容量和89%的首次庫侖效率,40次循環后放電比容量仍為150mAh/g。


Han等[7]在采用溶膠凝膠法140℃下制成溶膠。然后在800℃下煅燒得到LiNi0.8Co0.2-xAlx02粉體材料。結果表明:不管含Al(x0.05)多少,該粉體均是單相層狀化合物。此外,發現隨著Al的新增使材料的初始放電容量減少,但充放電性能卻變好了。Ju等[8]以Ni、Co、Al的硝酸鹽為原料,檸檬酸和乙二醇為螯合劑,采用噴霧熱解法制得Ni-Co-A1-O前驅體后,配入LiOH在800℃焙燒0.5~12h,所得NCA材料具有球形形貌,平均尺寸1.1μm。放電比容量高達200mAh/g,且具有良好的循環性能、高溫性能和倍率性能。


Hu[9]通過共沉淀法制備的NCA正極材料在2.8V-4.3V的充放電截止電壓范圍內以0.2C的電流密度充放電,材料具有196mAh/g的放電比容量,50圈循環后依然具有96.1%的容量保持率。Chung等[10]采用化學吸附的方法在NCA表面包覆了一層厚度為2~3nm的無定形碳,碳包覆層有效地抑制了基體材料與電解液中HF的反應,提高了基體材料的熱穩定性,并改善了其在大電流下的電化學性能。實際上,采用電化學惰性物質對鋰離子電池LiNi02基正極材料進行改性,雖然提高了循環性能和安全性能,但放電比容量或能量密度缺降低了。Kim等[11]采用沉淀法制備了A1F3表相改性的NCA正極材料,基體材料50次循環后的容量保持率僅86.5%,而改性材料卻達到96%,且改性材料的倍率性能和熱穩定性都得到了提高。


1.2NCM811的制備


Xiao等[12]采用過渡金屬醋酸鹽,配以不同鋰源,在不同條件下制備NCM811正極材料。結果表明,所得NCM811樣品的充放電性能差別顯著,以LiOHH2O或LiNO3為鋰源的樣品比容量明顯低于Li2CO3鋰源的樣品。Li2CO3和過渡金屬醋酸鹽經550℃預處理后在800℃燒結所得樣品,電化學性能最佳,0.2C倍率下前20次循環充放電最高容量為200.8mAh/g,平均容量188.1mAh/g。


Lu等[13]分別采用溶膠–凝膠法和共沉淀制備NCM811正極材料,并研究了兩種方法對材料性能的影響。結果發現,相比于共沉淀法,溶膠–凝膠法制備的NCM811正極材料顆粒為六面體結構,粒徑集中在500nm左右,層狀結構明顯,陽離子混排度和顆粒團聚度低,而振實密度高,首次放電比容量為200.2mAh/g,在0.5C下循環50次后容量保持率為82.2%。


Xiong等[14]制備了LiF原位包覆的NCM811材料,圖2為NCM811材料包覆后的EDX分析結果。由圖2可見,NCM811的表面分布著均勻的LiF層。LiF包覆層有效阻礙了HF與電極的副反應發生,200次循環后材料容量保持率比未包覆的高10.4%,倍率性能和60℃高溫循環性能同樣高于未包覆材料。


高鎳正極材料性能很大程度上取決于顆粒的尺寸和形貌[15],因此制備方法大多集中于將不同原料均勻分散,得到小尺寸、比表面積大的球形顆粒。共沉淀法與高溫固相法結合是目前的主流方法,前期原料混合均勻,制備的材料粒徑均一,表面形貌規整,并且過程易于控制,是目前工業生產的重要方法。噴霧干燥法較共沉淀法過程簡單,制備速度快,所得材料形貌并不亞于共沉淀法,有進一步研究的潛力。


2、高鎳系正極材料的改性研究


2.1NCA的改性研究


在使用過程中,NCA材料的重要問題是容量衰減。一方面,充電時Ni2+和Li+的半徑非常接近,部分Ni2+會占據Li+的空位,發生離子混排,造成材料的不可逆容量損失;另一方面,材料中的Ni在處于高氧化態時(Ni3+或Ni4+)具有很強的不穩定性,高溫下會導致材料結構發生改變,并容易與電解液發生副反應,造成容量衰減[16]。


目前,重要的改善方法是通過摻雜Mg、Mn等元素來合成LiNi1–x–y–zCoxAlyMzO2四元材料[17,18]以及對三元材料進行表面包覆來對材料的性能進行改善。摻雜可以穩定材料的晶格結構,降低陽離子混排程度,減少充放電過程中的不可逆容量損失,是從材料內部來提高性能。而表面包覆則可以降低電極材料與電解液的直接接觸面積,減少電解液中的HF對材料的腐蝕用途,進而抑制副反應的發生(圖3),是從材料外部來解決問題[19,20]。相比于摻雜,人們更多地采用表面包覆來對材料進行改性[21]。


Chung等人[22]將十二烷基硫酸鈉與NCA混合,在空氣中600℃煅燒5h后,得到碳包覆的NCA/C材料。在2.8~4.3V的電壓區間,0.1、0.5、1和3C倍率下進行充放電,NCA/C的放電比容量分別為183、165、140和83mAh/g,相比于未包覆材料的181、160、128和46mAh/g,在大倍率條件下有較大提高。同時,材料的循環性能也得到了改善,NCA/C在0.1C倍率下循環40圈的容量保持率為93%,而未包覆材料的容量保持率為86%。


Huang等[23]發現FePO4包覆提高了NCA材料的循環性能,但材料的首次充放電容量下降。采用電化學惰性物質進行包覆時,會損失材料的放電比容量和能量密度。在此基礎上,研究者提出了電化學活性物質包覆。Liu等人[24]通過熔融鹽法在NCA材料表面包覆重量百分比3.0%的LiCoO2。在0.5C,2.75~4.3V的測試條件下循環50次,NCA/LiCoO2材料的首次放電比容量為163.6mAh/g,容量保持率為95.8%,而未包覆材料的首次放電比容量為154.3mAh/g,容量保持率為87.9%。包覆后材料的循環和倍率性能均有了一定提升。電化學阻抗測試結果表明在包覆層表面生成的NiO相的減少是材料性能提升的重要原因。


Yoon等人[25]采用高能機械球磨法,在氬氣保護下將NCA與石墨烯200r/min球磨30min,得到NCA-石墨烯復合材料。在55.6mA/g的電流下循環80次,NCA-石墨烯復合材料的首次放電比容量為180mAh/g,容量保持率為97%,而未包覆材料的首次放電比容量為172mAh/g,容量保持率為91%。所包覆的石墨烯增強了材料的導電性,從而降低了電池的極化。相比于其他碳包覆實驗,該方法采用石墨烯進行包覆,不需高溫煅燒而直接獲得碳源,更加節能環保,但還要考慮添加石墨烯帶來的成本新增及提高石墨烯包覆層的均勻程度。Chung等[26]采用原位聚合方法在NCA材料包覆一層PAN,不僅穩定了材料結構、延緩了材料循環過程中阻抗的新增,同時也改善了材料的倍率性能。


Lim等人[27]通過溶液法制備出Li2O-2B2O3(LBO)包覆的NCA/LBO材料。LBO包覆層的形成過程及Li+在包覆層中的傳輸機理如圖4所示,可見包覆層阻止了HF對電極材料的侵蝕,并為Li+供應了良好的擴散通道。包覆后,電極材料的結構坍塌及過渡金屬溶解受到抑制,進而提高了材料55℃高溫下的循環性能。55℃下以電流為180mA/g進行測試,循環100次后包覆量重量百分比為2%的NCA/LBO材料的容量保持率為94.2%,遠遠高于未包覆材料的75.3%。因為具有較高的離子傳導能力,包覆后材料的倍率性能也有了相應提高。此外,由于包覆層抑制了電極材料與電解液的副反應,包覆后材料也展示了較好的熱穩定性。可見,采用鋰化物-氧化物作為復合氧化物對NCA材料進行包覆,可以很好地提高電極材料的性能。以此為基礎,嘗試其他的氧化物組成,或可成為未來的一個研究方向。


2.2NCM811的改性研究


層狀高鎳NCM材料的納米級一次顆粒能夠擴大反應界面并縮短Li+的擴散路徑,提高材料的容量和倍率性能,但也存在副反應的風險。NCM層狀材料與電解液反應,生成SEI膜,增大邊界阻抗,導致容量快速衰減[28–30]。另外,NCM層狀材料在高電壓下深度充電時,Li/O空位將導致被氧化的Ni3+/4+離子變得不穩定,陽離子發生遷移并在電極表面形成由NiO相和尖晶石相組成的表面重建層[31,32]。表面重建層的出現將增大Li+的擴散動力學阻力,導致容量衰減。高鎳NCM層狀材料還存在高溫性能差和振實密度低等缺點,制約著此材料的商業化應用。摻雜和表面包覆改性被認為是有效減少副反應、提高材料電化學性能和熱穩定性的重要方法。


Wang等[33]發現部分F-替代O2-有利于穩定NCM811材料的表面結構,改善材料的高溫循環性能。Yuan等[34]采用共沉淀法制備NCM811材料,并考察了Li、Mg、Al三種元素摻雜對材料性能的影響。Mg和Al的摻雜使得NCM811材料晶格常數減小,I(003)/I(104)增大,陽離子混排度降低,提高了層狀結構穩定性;Li摻雜雖然讓晶格常數增大,但在充電過程中多余的Li仍留在層狀結構中,起到穩定結構的用途。電化學測試中,Mg摻雜的樣品首次放電容量為205.9mAh/g,略低于其他樣品,但20次循環后容量僅衰減7.5%,為三者最優。


Sun等[35]發現Mg-Al共摻雜的NCM811材料的結構穩定性和熱穩定性優于未摻雜的或單一元素摻雜的材料。Lu等[36]在NCM811表面包覆NCM111材料,防止了電化學性能突降的現象。Woo等[37]為改善NCM811的穩定性,將Al、Mg協同摻雜,得到Li(Ni0.8Co0.1Mn0.08Al0.01Mg0.01)O2材料。Rietveld精修結果表明,材料層狀結構優良,Al3+進入過渡金屬層,Mg2+則同時進入鋰層和過渡金屬層,Al3+的加入降低了陽離子混排度,而Mg2+則起到穩定結構,提高循環性能的用途。Li(Ni0.8Co0.1Mn0.08Al0.01Mg0.01)O2的首次放電容量為191mAh/g,循環70次后容量衰減率僅為7.5%,明顯低于未摻雜的NCM811材料。


Woo等[38]制備了SO42–/ZrO2混合包覆的NCM811正極材料。試驗結果表明,不僅ZrO2包覆在NCM811材料表面,而且有大量的硫酸鹽和亞硫酸鹽官能團吸附在ZrO2層上。ZrO2在包覆層中起到物理保護用途,將正極材料與電解液隔離,減少副反應發生;而SO42–等官能團形成了一個穩定電解液層,起到抑制電解液分解的用途。60℃充放電試驗表明,SO42–/ZrO2混合包覆的NCM811材料,50次循環后容量保持率為88.9%,比未包覆的樣品高25%;95℃的存儲比較發現,混合包覆的樣品內部壓力上升最慢,說明混合包覆的樣品界面副反應所釋放的O2最少,從而保證了材料的穩定性和電化學可逆性。


Zheng等[39]指出NCM811高溫首次放電容量略低于高錳的材料,說明高溫狀態下的高鎳材料較不穩定,邊界反應和固體電解質界面膜(SEI膜)導致Li+再嵌入過程動力學阻力增大。NCM811前幾個循環放電容量較高,但100次循環后容量衰減率高達34.3%,明顯高于其他材料。差示掃描量熱分析表明,相比于低錳材料,高錳材料不僅放熱峰后移,并且峰值從721J/g下降至527J/g。由此可知,在高鎳NCM中提高錳含量能夠顯著提高熱穩定性。但Mn含量新增時,晶格參數c也會有明顯的增大,且Mn4+的增多將導致Ni2+/Ni3+值增大,陽離子混排度加劇,Mn含量進一步新增將致使材料結構從α-NaFeO2型層狀結構向尖晶石結構轉變,降低材料比容量[40]。


3、高鎳NCA和NCM811正極材料的比較


層狀結構中,鎳是重要的氧化還原反應元素,因此,提高鎳含量可以有效提高電池的比容量[41,42]。從電池能量密度和電動汽車續航里程來看,含鎳的三元系優勢明顯,特別是高鎳三元系NCA和NCM811材料制作的電池。NCA和NCM811是目前研究和應用非常熱門的兩種鋰離子電池正極材料,兩者的比較也是研究的熱點。


。NCA和NCM811兩種正極材料,鎳含量基本沒差異,容量基本接近。關于普通三元材料,生產過程中只要空氣氣氛,而NCA要純氧氣氣氛,純氧的成本較高,且對制造氧氣生產供應設備要求極高,同時NCA對溫濕度敏感性較強,要生產環境濕度控制在10%以下,加大了生產和管理的成本。同時,NCM811相對NCA的Co含量更低,這意味著NCM811具有更好的成本及能量密度優勢。排除容量、工作電壓和成本的擔憂,NCA材料較NCM811具有更好的容量保持率[44]。特別是Al的摻入則可以一定程度上改善材料的結構穩定性,從而改善循環穩定性。此外,Co、Al的復合能促進Ni2+的氧化,減少3a位Ni2+含量,抑制材料晶體結構從H2到H3的不可逆相變,從而提高材料本身的循環穩定性。


Mn的摻入可以引導鋰和鎳層間混合,并且可以改善材料的高溫性能,提高發生放熱反應溫度到220℃,而NCA的放熱反應溫度到180℃[45]。高鎳NCA材料荷電狀態下的熱穩定較低,導致電池的安全性下降。另一方面,充放電過程中嚴重的產氣,導致電池鼓脹變形,循環及擱置壽命下降,給電池帶來安全隱患,所以通常使用NCA正極材料制作18650型圓柱電池,以緩解電池鼓脹變形問題。TeslaModelS采用與Panasonic共同研發的高容量3.1AhNCA鋰離子電池組,由7000顆18650圓柱電池組成。此外要考慮的是,盡管NCM811和NCA的化學結構具有相似性,但NCM和NCA正極材料通常采用不同的合成路線生產。將Al引入到NC結構中通常是通過熱處理來實現的,而Mn更容易通過共沉淀法加入。


相關產品

  1. <form id="ejezu"></form>

  2. 主站蜘蛛池模板: 张家界市| 久久婷婷成人综合色| 色欲av永久无码精品无码蜜桃| 长治市| 日本三级吃奶头添泬无码苍井空 | 精品人妻伦一二三区久久| 德惠市| 凤山市| 亚洲亚洲人成综合网络| 特黄aaaaaaaaa毛片免费视频| 奉新县| 色噜噜狠狠色综合日日| 亚洲男人天堂| 久久久久成人精品免费播放动漫| 国产精品永久久久久久久久久| 毛片免费视频| 久久久久久久极品内射| 成全高清免费观看mv动漫| 无码国产精品一区二区色情男同| 色妺妺视频网| 色偷偷噜噜噜亚洲男人| 内射干少妇亚洲69xxx| 亚洲码欧美码一区二区三区| 宜兰市| 岳阳市| 欧美裸体xxxx极品少妇| 宿松县| 国产激情一区二区三区| 久久久久99精品国产片| 精产国品一二三产区m553麻豆| 莆田市| 弋阳县| 江西省| 田阳县| 忻州市| 宣化县| 国产良妇出轨视频在线观看| 日韩精品一区二区在线观看| 临夏市| 淅川县| 晋州市| 好爽又高潮了毛片免费下载| 国产午夜三级一区二区三| 国产成人精品一区二区三区| 久久婷婷成人综合色| 性xxxx搡xxxxx搡欧美| 极品新婚夜少妇真紧| 国产精品久久久久久妇女6080| 麻豆乱码国产一区二区三区| 亚洲视频在线观看| 老鸭窝视频在线观看| 达尔| 成全视频在线观看免费| 性生交大片免费看l| 中文字幕人妻丝袜二区| 欧美丰满老熟妇xxxxx性| 性xxxx欧美老妇胖老太性多毛| 免费观看全黄做爰的视频| 亚洲无人区码一码二码三码的含义| 伊人久久大香线蕉综合网站| 性生交大全免费看| 安宁市| 湟源县| 超碰免费公开| 色综合久久88色综合天天| 饶河县| 国产精品99| 99久久精品国产一区二区三区| 海原县| 公安县| 贡觉县| 灵川县| 正宁县| 瑞安市| 库伦旗| 久久亚洲国产成人精品性色| 亚洲日韩一区二区| 国产精品美女久久久久| 光泽县| 国产人妻精品午夜福利免费| а√中文在线资源库| 先锋影音av资源网| 中文字幕人成乱码熟女香港| 久久影院午夜理论片无码| 久久精品噜噜噜成人| 精品无码一区二区三区久久| 吉隆县| 平邑县| 成人h动漫精品一区二区| 国产精品成人99一区无码| 亚洲精品一区二区三区四区五区| 中文字幕乱码人妻二区三区| 国产99久一区二区三区a片| 彭阳县| 国产精品久久久久久吹潮| 和静县| 亚洲va国产va天堂va久久| 久久亚洲熟女cc98cm| 信丰县| 色婷婷综合久久久中文字幕| 南陵县| 国产农村妇女aaaaa视频| 米林县| 国产精品av在线| 乖乖趴着h调教3p| 国产午夜激无码毛片久久直播软件 | 色偷偷噜噜噜亚洲男人| 康马县| 国产精品无码免费播放| 一本大道东京热无码| 成全我在线观看免费观看| 呼图壁县| 双城市| 亚洲色成人网站www永久四虎| 久久精品国产成人av| 四虎影成人精品a片| 手游| 亚洲第一成人网站| 精国产品一区二区三区a片| 国产三级精品三级在线观看| 无码国产精品久久一区免费| 成全视频观看免费高清中国电视剧| 怀安县| 日本欧美久久久久免费播放网| 庐江县| 大肉大捧一进一出好爽| 国产熟女一区二区三区五月婷| 澄江县| 亚洲中文字幕无码爆乳av| 久久久久成人片免费观看蜜芽| 饶阳县| 一区二区视频| 乃东县| 大地资源二在线观看免费高清 | 国产精品久久久一区二区| 人人妻人人玩人人澡人人爽| 国精产品一区二区三区| 咸阳市| 欧美性生交大片免费看| 华坪县| 国产成人精品亚洲日本在线观看| 佛冈县| 安顺市| 察哈| 高邮市| 辣妹子影院电视剧免费播放视频| 国产良妇出轨视频在线观看| 东宫禁脔(h 调教)| 昌平区| 临城县| 成熟妇人a片免费看网站| 平果县| 武穴市| 巴南区| 兴化市| 国产精品偷伦视频免费观看了| 亚洲小说欧美激情另类| 成av人片一区二区三区久久| 精品夜夜澡人妻无码av| 人妻巨大乳hd免费看| 南康市| 人人澡超碰碰97碰碰碰| 国产精品久久久久久久久久 | 国产精品96久久久久久| 亚洲欧美一区二区三区在线| 国产精品一区二区久久国产| 肃宁县| 狠狠躁日日躁夜夜躁2022麻豆| 大地资源高清在线视频播放 | 宁乡县| 大竹县| 少妇粉嫩小泬喷水视频www| 成全世界免费高清观看| 国产真人无遮挡作爱免费视频| 成人性生交大片免费看中文| 日韩人妻无码一区二区三区99| 少妇一夜三次一区二区| 昭通市| 日韩精品久久久久久免费| 四川丰满少妇被弄到高潮| 桃园县| 欧美高清精品一区二区| 久久久久久亚洲精品中文字幕| 欧美成人片在线观看| 武宁县| 免费观看黄网站| 中文字幕亚洲无线码在线一区| 中文字幕人成人乱码亚洲电影| 砀山县| 欧美成人在线视频| 丰顺县| 奉节县| 亚洲欧美一区二区三区在线| 平顶山市| 精品人妻人人做人人爽夜夜爽| 太保市| 鄂尔多斯市| 宁武县| 久久国产成人精品av| 国产精品久久久久久久久动漫 | 欧美裸体xxxx极品少妇| 德兴市| 日韩精品人妻中文字幕有码| 舒兰市| 国产成人免费视频| 亚洲最大成人网站| 无码人妻丰满熟妇bbbb| 噶尔县| 国产熟女一区二区三区五月婷| 安国市| 国产精品美女www爽爽爽视频| 亚洲 欧美 激情 小说 另类| 房产| 盐边县| 又大又长粗又爽又黄少妇视频| 无码精品人妻一区二区三区影院| 国产偷人妻精品一区| 敦煌市| 久久久久99精品成人片三人毛片 | 亚洲第一av网站| 国产精品毛片va一区二区三区| 日韩精品无码一区二区三区久久久| 人人妻人人玩人人澡人人爽| 丰原市| 少妇熟女视频一区二区三区| 晋城| 亚洲字幕av一区二区三区四区| 丁香五香天堂网| 老熟女网站| 吴川市| 国产精品一区二区av| 五月天激情国产综合婷婷婷| 铜川市| 泽普县| 三年片免费观看影视大全满天星| 成人做爰视频www| 毛片免费视频| 日日摸日日添日日碰9学生露脸 | 国产精品无码免费专区午夜| 无码人妻精品一区二区三| 怡红院av亚洲一区二区三区h| 大地影院免费高清电视剧大全| 武平县| 国产精品偷伦视频免费观看了| 日韩高清国产一区在线| 湟源县| 右玉县| 久久综合久久鬼色| 亚洲第一av网站| 羞羞视频在线观看| 泽库县| 国内精品人妻无码久久久影院蜜桃| 咸丰县| 国产成人无码精品亚洲| 国产精品久久久久久妇女6080 | 99久久国产热无码精品免费| 欧美色综合天天久久综合精品| 国产精品久久久久久亚洲影视| 中文字幕亚洲无线码在线一区| 成熟人妻av无码专区| 高密市| 成全看免费观看| 无码人妻丰满熟妇啪啪欧美| 成人毛片18女人毛片免费| 天门市| 马关县| 留坝县| 门源| 东山县| 灵璧县| 哈尔滨市| 林甸县| 国产精品揄拍100视频| 中文久久乱码一区二区| 三年片免费观看了| 欧美激情一区二区三区| 99久久久国产精品无码免费| 宁陵县| 泰宁县| 亚洲成av人片一区二区梦乃| 个旧市| 翁牛特旗| 国产精品白浆一区二小说| 梓潼县| 资溪县| 老色鬼久久av综合亚洲健身| 广灵县| 精品无人国产偷自产在线| 金山区| 松原市| 国精产品一区一区三区免费视频 | 国产人妻精品一区二区三区| 横峰县| 国精一二二产品无人区免费应用| 城市| 云南省| 中文字幕 人妻熟女| 牟定县| 探索| 平湖市| 尤物视频网站| 精人妻无码一区二区三区| 国产精品成人国产乱| 东北少妇不戴套对白第一次| 木兰县| 无码h黄肉3d动漫在线观看| 剑川县| 久久99精品久久只有精品| 石城县| 黔东| 泉州市| 邵阳县| 弋阳县| 闸北区| 艳妇臀荡乳欲伦交换在线播放| 国产精品久久久久久亚洲色| 欧美精品在线观看| 延寿县| 成全电影大全在线观看国语版| 国产真人做爰毛片视频直播 | 国产精品久免费的黄网站 | 鹿泉市| 成全世界免费高清观看 | 紫阳县| 成全视频观看免费高清中国电视剧| 本溪| 乐业县| 阜宁县| 骚虎视频在线观看| 欧洲精品码一区二区三区免费看| 五峰| 国产乡下妇女做爰| 午夜时刻免费入口| 风流少妇按摩来高潮| 石柱| 一本大道东京热无码| 无码国产精品一区二区高潮| 日韩人妻无码一区二区三区99| 中文字幕乱码无码人妻系列蜜桃| 精品人妻无码一区二区三区四川人| 明水县| 国产精品久久久久久妇女6080 | 少妇高潮一区二区三区99| 少妇人妻偷人精品一区二区| 亚洲精品久久久久久一区二区| 熟妇高潮一区二区在线播放| 艳妇臀荡乳欲伦交换在线播放| 我把护士日出水了视频90分钟| 欧美午夜精品一区二区蜜桃| 宜州市| 99国产精品久久久久久久成人| 吉隆县| 欧美色综合天天久久综合精品| 板桥市| 国产老熟女伦老熟妇露脸| 西峡县| 青铜峡市| 亚欧洲精品在线视频免费观看| 宁晋县| 太原市| 一区二区三区视频| 汤原县| 国产亚洲色婷婷久久99精品| 囊谦县| 绿春县| 南通市| 成全世界免费高清观看| 紫金县| 成全电影在线| 无码人妻av免费一区二区三区| 临城县| 内射中出日韩无国产剧情| 清新县| 性生交大全免费看| 欧美性受xxxx黑人xyx性爽| 久久久久麻豆v国产精华液好用吗 国产亚洲精品久久久久久无几年桃 | 桃园县| 锦州市| 亚欧成a人无码精品va片| 成人精品一区日本无码网| 性生交大片免费看女人按摩| 樱桃视频大全免费高清版观看| 通河县| 精品国产乱码一区二区三区| 天天操夜夜操| 徐汇区| 熟女人妻一区二区三区免费看| 久久99精品久久只有精品| 屏边| 88国产精品视频一区二区三区| 亚洲精品一区二区三区四区五区 | 欧美性猛交xxxx乱大交| 国产午夜精品一区二区三区嫩草 | 中文在线最新版天堂| 精国产品一区二区三区a片| 若尔盖县| 成全视频免费高清| 大石桥市| 华坪县| 通渭县| 国产精品久久| 香蕉影院在线观看| 成人做受黄大片| 国产人妻大战黑人20p| 又白又嫩毛又多15p| 中文在线资源天堂www| 饶河县| 涞水县| 日韩精品一区二区三区| 泰兴市| 邯郸市| 国产熟妇另类久久久久| 少妇被躁爽到高潮| 少妇粉嫩小泬喷水视频www| 泸溪县| 国产真实的和子乱拍在线观看| 稻城县| 全南县| 午夜成人鲁丝片午夜精品| 雷波县| 日韩精品人妻中文字幕有码| 佛冈县| √8天堂资源地址中文在线| 松江区| 成人h动漫精品一区二区无码 | 国产精品丝袜黑色高跟鞋| 兰溪市| 国精产品一区一区三区有限公司杨 | 集安市| 国产麻豆剧果冻传媒白晶晶 | 精品国产乱码久久久久久1区2区| 成人永久免费crm入口在哪| 麻豆乱码国产一区二区三区| 肥老熟妇伦子伦456视频| 成全在线观看免费完整版| 亚洲 小说 欧美 激情 另类| 亚洲精品一区二区三区中文字幕| 涟源市| 拉孜县| 国产全是老熟女太爽了| 绥宁县| 免费99精品国产自在在线| 五家渠市| 日韩av无码一区二区三区不卡| 洪湖市| 错那县| 贵定县| 怀集县| 中文字幕无码毛片免费看| 国产熟女一区二区三区五月婷| 一本大道东京热无码| 赣州市| 义马市| 亚洲精品久久久蜜桃| 平南县| 巴林左旗| 驻马店市| 人人妻人人玩人人澡人人爽| 阜宁县| 熟女丰满老熟女熟妇| 视频| 国产精品久久| 台江县| 好吊色欧美一区二区三区视频| 连城县| 日韩精品一区二区三区| 国产无套内射普通话对白| 三年成全免费观看影视大全 | 欧美不卡一区二区三区| xx性欧美肥妇精品久久久久久| 阳泉市| 无码人妻丰满熟妇啪啪| 少妇被躁爽到高潮无码人狍大战| 赞皇县| 草色噜噜噜av在线观看香蕉| 国产精品久久久午夜夜伦鲁鲁| 天堂在线中文| 治多县| 精品爆乳一区二区三区无码av| 风韵丰满熟妇啪啪区老熟熟女| 无码一区二区三区在线观看| 麻豆国产一区二区三区四区| 东宁县| 名山县| 免费99精品国产自在在线| 熟妇高潮一区二区在线播放| 四平市| 丹凤县| 国产女人18毛片水真多1| 蓬莱市| 乡城县| 湘潭市| 扎囊县| 云林县| 狠狠人妻久久久久久综合蜜桃| 沙河市| 国产成人无码精品久久久露脸| 欧美freesex黑人又粗又大| 定边县| 宜州市| 朝阳区| 人妻巨大乳一二三区| 禄劝| 奉节县| 南汇区| 欧美精品在线观看| 卓资县| 日日摸日日添日日碰9学生露脸| 信宜市| 国产乡下妇女做爰| 成人性生交大免费看| 成全电影大全在线观看国语版高清 | 男人扒女人添高潮视频| 熟妇人妻中文字幕无码老熟妇 | 国产成人精品白浆久久69| 男ji大巴进入女人的视频| 鞍山市| 亚洲精品一区二区三区四区五区| 精品久久久久久| 国产情侣久久久久aⅴ免费| 丰满岳跪趴高撅肥臀尤物在线观看 | 乖乖趴着h调教3p| 无码人妻少妇色欲av一区二区| 色欲狠狠躁天天躁无码中文字幕| 国产偷窥熟妇高潮呻吟| √天堂资源地址在线官网| 久久国产成人精品av| 布尔津县| 中国女人做爰视频| 弥渡县| 秋霞在线视频| 精品久久久久久| 乌兰县| 久久成人无码国产免费播放 | 欧美色就是色| 新兴县| 精品人伦一区二区三电影 | 成人国产片女人爽到高潮| 龙陵县| 成人无码视频| 熟妇高潮喷沈阳45熟妇高潮喷| 汕头市| 云南省| 中文字幕人妻丝袜二区| 成全影视在线观看更新时间| 中文字幕人成人乱码亚洲电影| 久久久久久无码午夜精品直播| 咸丰县| 滦平县| 盖州市| 好吊色欧美一区二区三区视频 | 乖乖趴着h调教3p| 宜宾市| 钟山县| 欧美性生交xxxxx久久久| 成人做受黄大片| 阿勒泰市| 凉城县| 国产视频一区二区| 国产精品成人无码免费| 色妞色视频一区二区三区四区| 麻豆人妻少妇精品无码专区| 久久av无码精品人妻系列试探| 欧美一性一乱一交一视频| 国产无遮挡又黄又爽免费网站| 97伦伦午夜电影理伦片| 玉树县| 国产在线视频一区二区三区| 三人成全免费观看电视剧| 在线观看的av网站| 建德市| 江口县| 国产午夜精品一区二区| 吉林省| 资阳市| 成人精品一区日本无码网| 国产真实的和子乱拍在线观看| 无码人妻一区二区三区在线视频 | 锡林浩特市| 又黄又爽又色的视频| 青河县| 狠狠人妻久久久久久综合| 湛江市| 阿合奇县| 人妻无码中文久久久久专区| 峡江县| 999zyz玖玖资源站永久| 彰化市| 色翁荡息又大又硬又粗又爽| 微博| 成人免费无码大片a毛片| 南康市| 东宫禁脔(h 调教)| 鄂尔多斯市| 国产婷婷色一区二区三区| 欧美成人午夜无码a片秀色直播 | 龙海市| 黄浦区| 亚洲成av人片一区二区梦乃| 肃宁县| 中文字幕av一区二区三区| 国产精品久久久久无码av| 色吊丝中文字幕| 强行无套内谢大学生初次 | 宜丰县| 涞源县| 少妇高潮灌满白浆毛片免费看| 桐乡市| 亚洲乱妇老熟女爽到高潮的片| 成人免费无码大片a毛片| 国产精品久免费的黄网站| 日本不卡一区| 欧美不卡一区二区三区| 玛纳斯县| 人妻奶水人妻系列| 激情 小说 亚洲 图片 伦| 桃园县| 少妇高潮灌满白浆毛片免费看| 夜夜爽妓女8888视频免费观看| 久久久久无码国产精品不卡 | 精品无人国产偷自产在线| 66亚洲一卡2卡新区成片发布| 97久久精品人人澡人人爽| 国产成人无码www免费视频播放| 免费特级毛片| 福利视频在线播放| 全南县| 欧美gv在线观看| 无码人妻av一区二区三区波多野| 日本免费一区二区三区| 蚌埠市| 深圳市| 政和县| 嘉鱼县| 少妇高潮惨叫久久久久久| 久久久久成人片免费观看蜜芽| 性一交一乱一乱一视频| 浦城县| 慈利县| 望江县| 嵊州市| 微山县| 富裕县| 亚洲一区二区三区| 连江县| 特黄aaaaaaa片免费视频| 本溪市| 538在线精品| 牛牛在线视频| 国产suv精品一区二区| 国产精品久久久久无码av色戒 | 亚洲中文字幕无码爆乳av| 玉溪市| 桦甸市| 久久久www成人免费精品| 青青草视频免费观看| 国产伦精品一区二区三区妓女下载| 阜宁县| 国产av精国产传媒| 舟曲县| 亚洲精品一区二区三区新线路| 国产欧美熟妇另类久久久| 国产精品久久久久久吹潮| 国产成人午夜高潮毛片| 额济纳旗| 欧美丰满一区二区免费视频| 榕江县| 无码一区二区三区在线观看| 白水县| 台中县| 亚洲欧美日韩一区二区 | 国产精品久久久久久久久动漫| 日韩精品一区二区在线观看| 极品少妇xxxx精品少妇偷拍| 高密市| 五莲县| 九龙城区| 无码人妻一区二区三区在线| 麻豆美女丝袜人妻中文| 诸城市| 新沂市| 瑞安市| 蜜桃av色偷偷av老熟女| 日韩人妻无码一区二区三区99 | 无码少妇一区二区| 育儿| 成全动漫视频在线观看免费高清| 合川市| 999zyz玖玖资源站永久| 荣昌县| 波多野结衣网站| 武清区| 午夜福利电影| 成人免费区一区二区三区| 精品人伦一区二区三电影| 亚洲乱妇老熟女爽到高潮的片| 成熟妇人a片免费看网站| 欧洲成人午夜精品无码区久久| 亚洲熟妇av乱码在线观看 | 无码一区二区三区在线观看| 三年成全免费看全视频| 欧美老熟妇乱大交xxxxx| 国内精品人妻无码久久久影院蜜桃| 思南县| 国产农村乱对白刺激视频| 一区二区视频| 贡觉县| 综合天堂av久久久久久久| 国产无套精品一区二区| 天天燥日日燥| 久久久久国产精品| 亚洲国产精品久久久久久| 无码人妻一区二区三区在线| 卓资县| 俺去俺来也在线www色官网| 无码人妻一区二区三区在线| 南丰县| 沾益县| 台东市| 久久成人无码国产免费播放 | 南京市| 强壮的公次次弄得我高潮a片日本 播放男人添女人下边视频 | 亚洲日韩一区二区三区| 无码人妻丰满熟妇区bbbbxxxx| 少妇无套内谢久久久久| 东海县| 哈尔滨市| 通许县| 临泉县| 宁远县| 万全县| 三年成全免费观看影视大全| 盐池县| 昭平县| 衡阳市| 黎城县| 成熟妇人a片免费看网站| 日韩熟女精品一区二区三区|