欧美黑人又粗又大的性格特点,国产农村妇女aaaaa视频,欧美高清精品一区二区,好爽又高潮了毛片免费下载

混合型超級電容器的研究進展

鉅大鋰電  |  點擊量:0  |  2019年09月02日  

劉海晶,夏永姚


(復旦大學化學系上海市分子催化與先進材料重點實驗室新能源研究院 上海 200433)


摘要:與傳統的二次電池相比,超級電容器具有長壽命、高功率密度的特點,但是能量密度較低。本文主要介紹了混合超級電容器的發展狀況以及電極材料的最新研究進展。目前有許多研究工作者都致力于改善超級電容器體系的能量密度,一個有效的途徑是提高電容器電極材料的比電容,另一個途徑則應用不對稱混合型超級電容器體系,即一個電極采用電極活性炭電極,而另一個電極采用贗電容電極材料或電池電極材料,通過提高電容器的工作電壓,從而提高電容器的能量密度。針對提高混合型超級電容器能量密度的工作主要集中在采用具有氧化還原活性的材料與活性炭組成不對稱超級電容器,比如:活性炭/NiOOH(FeOOH),活性炭/石墨,活性炭/金屬氧化物以及活性炭/聚合物等混合超級電容器。近年來,鋰離子嵌入化合物以及鋰離子電池碳材料作為混合超級電容器的正極材料得到了廣泛的關注。同時,介紹了針對由水系鋰離子電池電極材料作為正極,活性炭作為負極組成的混合型超級電容器開展的研究工作,其正極材料包括LiMn2O4,LiCoO2,LiTi2(PO4)3以及LiCo1/3Ni1/3Mn1/3O2等。以上混合型超級電容器相比于活性炭/活性炭雙電層電容器,均在能量密度的提高以及工作電壓的提高上得到了較大的進展。最后本文還對近幾年比較熱門的幾種混合型電化學電容器和相關材料的未來發展趨勢作了簡單介紹。


1引言


超級電容器的發展始于20世紀60年代,在20世紀90年代由于混合電動汽車的興起,超級電容器受到了廣泛的關注并開始迅速發展起來[1—6]。超級電容器是介于傳統電容器和充電電池之間的一種新型儲能裝置[7—11],其容量可達幾百至上千法拉。與傳統電容器相比,它具有較大的容量、較高的能量、較寬的工作溫度范圍和極長的使用壽命,傳統電容器以μF(微法)標稱電容量,超級電容器靜電容量可達到10萬F以上;而與蓄電池相比,它又具有較高的功率密度和更好的循環壽命,且對環境無污染(見表1)。因此,它結合了傳統電容器與電池的優點,是一種應用前景廣闊的化學電源,屬于新興的功率補償和儲能裝置范疇。近幾年來,超級電容器技術的發展引起了人們的廣泛關注,并成功應用在消費電子類產品、能源交通(電動汽車、太陽能和風能儲能)、功率補償等領域,其市場規模正在快速擴大。


2電化學超級電容器簡介


2.1超級電容器工作原理及分類


超級電容器作為功率補償和能量存儲裝置,其儲存電量的多少表現為電容F的大小。根據電能的儲存與轉化機理,超級電容器分為雙電層電容器(electric double layer capacitors,EDLC)和法拉第準電容器(又叫贗電容器,pseudo-capacitors),其中法拉第準電容器又包括金屬氧化物電容器和導電高分子電容器。最近又出現了一種正負極分別采用電池材料和活性炭材料的混合超級電容器。


2.1.1雙電層電容器


雙電層電容器的基本原理是利用電極和電解質之間形成的界面雙電層來存儲能量的一種新型電子元件。是以雙電層-雙電層(electric double layer)為主要機制,即在充電時,正極和負極的炭材料表面分別吸附相反電荷的離子,電荷保持在炭電極材料與液體電解質的界面雙電層中。這種電容器的儲能是通過使電解質溶液進行電化學極化來實現的,并沒有產生電化學反應,這種儲能過程是可逆的。雙電層電容器主要是由具有高比表面積的電極材料組成,目前主要研究開發了采用碳電極的電化學雙電層電容器。該碳電極主要是由高比表面積的活性炭顆粒制得,以硫酸或到導電型的固體電解質作為電解液,在其使用電位范圍內,充電時可得到很大的界面雙電層電容。


2.1.2法拉第準電容器


法拉第準電容是以準電容-準電容(pseudo-capacitance)為主要機制,在電極表面或體相中的二維或準二維空間上,正極和負極表面分別以金屬氧化物的氧化/還原反應為基礎或以有機半導體聚合物表面摻雜不同電荷的離子為基礎,產生與電極充電電位有關的電容[12,13]。在相同的電極面積的情況下,容量是雙電層電容的10—100倍。


2.1.3混合型超級電容器


超級電容器又可分為對稱型和非對稱型,其中正負極材料的電化學儲能機理相同或相近的為對稱型超級電容器,如碳/碳雙電層電容器和RuO2/RuO2電容器。為了進一步提高超級電容器的能量密度,近年來開發出了一種新型的電容器——混合型超級電容器。在混合型超級電容器中,一極采用傳統的電池電極并通過電化學反應來儲存和轉化能量,另一極則通過雙電層來儲存能量。電池電極具有高的能量密度,同時兩者結合起來會產生更高的工作電壓,因此混合型超級電容器的能量密度遠大于雙電層電容器。目前,混合型超級電容器是電容器研究的熱點。在超級電容器的充放電過程中正負極的儲能機理不同,因此其具有雙電層電容器和電池的雙重特征。混合型超級電容器的充放電速度、功率密度、內阻、循環壽命等性能主要由電池電極決定,同時充放電過程中其電解液體積和電解質濃度會發生改變。


2.2超級電容器的特點


超級電容器是介于傳統物理電容器和電池之間的一種較佳的儲能元件,其巨大的優越性表現為:


(1)功率密度高。超級電容器的內阻很小,而且在電極/溶液界面和電極材料本體內均能實現電荷的快速儲存和釋放。


(2)充放電循環壽命長。超級電容器在充放電過程中沒有發生電化學反應,其循環壽命可達萬次以上。


(3)充電時間短。完全充電只需數分鐘。


(4)實現高比功率和高比能量輸出。


(5)環境溫度對正常使用影響不大。超級電容器正常工作溫度范圍在-35—75℃。


3混合型超級電容器的研究進展


雖然雙電層電容器和法拉第準電容器的能量密度遠遠大于傳統的物理電容器,但是其能量密度和電池如鋰離子電池、鎳氫電池等相比還是很低的。


產生這一現象的主要原因是:無論是雙電層電容還是法拉第準電容,其儲能過程都僅發生在電極材料的表面或近表面;相對于此,電池材料則是通過體相的氧化還原過程來儲存能量的。為了近一步提高超級電容器的能量密度,人們發明了混合體系,并且這種混合體系近幾年逐漸成為研究熱點[14—26]。


混合型電化學超級電容器是近年來被關注的儲能元件,它具有比常規電容器能量密度大、比二次電池功率密度高的優點(如圖1)[2],而且可快速充放電,使用壽命長,是一種高效、實用的能量存儲裝置,因而有著廣泛的應用前景,如便攜式儀器設備、數據記憶存儲系統、電動汽車電源及應急后備電源等,特別是在電動汽車上,超級電容器與電池聯合,分別提供高功率和高能量,既減小了電源體積,又延長了電池的壽命。目前,世界各國紛紛制定近期的目標和發展計劃,將其列為重點研究對象。俄羅斯、美國和日本等發達國家都為混合型超級電容器的研制開發投入了大量資金。在中國混合電容器也正在迅速發展,并展現出一定的市場前景。目前,上海奧威、哈爾濱巨容等電容器公司已經開始批量生產由EMSA公司研制的AC/NiOOH混合型超級電容器,并將其應用到電動公交車或太陽能電池領域。為了同時獲得較高的能量密度和功率密度,人們開始設計新型的非對稱型電化學超級電容器,即電容器的一極是雙電層電極,另一極為法拉第準電容電極。非對稱型電化學超級電容器綜合了兩類電化學電容器的優點,可更好地滿足實際應用中負載對電源系統的能量密度和功率密度的整體要求。另外,人們開始嘗試用二次電池的電極材料取代傳統電化學電容器的一極,制成電池型電容器,適宜在短時間大電流放電的情況下工作,可作為電動車輛的啟動、制動電源。


電容器電容值的高低與電極材料的比表面積有密切的關系,制備具有高比表面積的納米級微孔材料成為一種改善電極材料電容性能的新思路。目前的研究熱點非對稱型超級電容器體系與雙電層電容器體系的性能比較如表2所示。以下簡單介紹幾種不同類型的混合型超級電容器。


3.1活性炭/NiOOH(FeOOH)混合電化學超級電容器


Varakin等用碳材料作負極,用NiOOH作正極組裝的碳鎳混合超級電容器,其能量密度達到7.95Wh/kg[29];國內也有人對此進行了一定的研究,劉志祥等用活性炭作負極,用α-Ni(OH)2作正極的碳鎳混合超級電容器,其雙電極比容量可達到90.7F/g,其能量密度達到5.12Wh/kg[30]。1997俄羅斯的EMSA公司年推出牽引型AC/NiOOH超級電容器,其比能量達12Wh/kg,比功率為400W/kg;啟動型C/NiOOH超級電容器目前能做到比能量3Wh/kg,比功率1000W/kg,水系AC/Ni(OH)2已經實現了商品化。本課題組采用化學沉積的方法將Ni(OH)2納米顆粒沉積在碳納米管的表面,采用Ni(OH)2含量為70%的復合材料為正極,活性炭為負極,組成混合超級電容器,在功率密度為1500W時,可保持能量密度32Wh/g,經過2000周循環后仍可維持90%以上的容量[31]。目前這類混合型超級電容器已被成功應用于電動汽車的動力系統。例如,由上海的奧威公司研制的超級電容器公交車已經成功在上海運行。該電容公交車完全以AC/NiOOH超級電容器為動力。最近,山東煙臺也出現了以這種混合電容器為動力的超級電容公交車。這些都說明了混合型電容器的廣闊市場前景。但與AC/PbO2體系相似,AC/NiOOH超級電容器在充電過程同樣存在電解液消耗的問題。該體系的正負極在充電過程分別發生以下反應:


在充電過程中電解液中OH-向正極遷移并與Ni(OH)2發生反應,產生NiOOH且釋放出電子。與此同時,K+向負極遷移,并在活性碳電極的表面吸附產生吸附電容。通過以上分析我們可以發現:在充電過程中的陰陽離子分離造成了電解質消耗的問題。


本課題組采用鐵鹽水解的方法,制備了beta-FeOOH化合物,該化合物在工作區間1.5—3.3V(vsLi+/Li)表現出良好的循環特性,并且其容量可以達到200mAh/g,比較適合作為電化學不對稱電容器的負極[17]。將FeOOH和商用活性炭配對組裝的不對稱電容器,其工作區間在0—3V,比容量為30mAh/g,其實際能量密度可以達到碳/碳雙電層電容器的2—3倍。對該體系進行倍率測試,發現其具有較好的倍率特性,在10C電流下工作,仍有80%的容量維持率,經過800次循環,基本無衰減。


3.2 Li4Ti5O12/活性炭混合電化學超級電容器


2001年美國Telcordia Technologies報道了有機電解質溶液系Li4Ti5O12/AC混合電容器[19]。這一混合體系分別以活性炭(AC)和Li4Ti5O12為正負極,其能量密度可達每公斤數十瓦時(接近目前鉛酸蓄電池的能量密度水平),50C倍率放電是5C倍率放電容量的75%,4000次循環后容量保持90%以上,有商品化的可能。采用同樣的電極材料體系和2M的LiBF4/乙腈溶液制成的軟包裝模擬電容器,比能量達11Wh/kg,循環壽命可達100000次。如圖2所示,在充電過程中,電解質中的陰離子向正極(活性炭)遷移并產生吸附電容,同時Li+向負極(Li4Ti5O12)遷移并發生嵌入反應。


該體系與一般雙電層電容器的工作曲線如圖3所示。Li4Ti5O12/AC體系的工作電壓范圍為1.5—2.8V或者更高,而一般的雙電層電容器的工作電壓基本在0—2.7V范圍,根據體系能量密度計算公式:E=1/2CV2,該體系就可以得到幾倍于雙電層電容器的能量密度。


Li4Ti5O12/AC體系的能量密度在很大程度上取決于活性炭電極,由于活性炭材料在電極過程中發生陰離子的吸附脫附反應,該非法拉第過程所能夠儲存的能量有限,一般在有機體系中,活性炭材料的容量基本在100F/g左右。同樣的,該體系的功率密度則在很大程度上取決于Li4Ti5O12材料,因為Li4Ti5O12的電極過程是鋰離子的嵌入脫嵌反應,因此在反應速率上遠不及活性炭電極的吸附脫附過程。Li4Ti5O12作為鋰離子電池負極材料,對于石墨等碳材料而言,具有更好的安全性能、較高的可靠性和循環壽命長等優點,因此,近年來被認為可能在不對稱電容器以及高功率儲能電池方面得以應用。


Li4Ti5O12尖晶石材料是一種典型的零應變嵌入化合物,顯著特點是具有一個十分平坦的充放電電壓平臺。它能夠避免充放電循環中由于電極材料來回伸縮而導致的結構破壞,從而提高電極的循環性能和使用壽命,減少了隨循環次數的增加而帶來的比容量的大幅度衰減[32,33]。尖晶石型Li4Ti5O12的理論容量為175mAh/g,實際循環容量在150—160mAh/g范圍內[34,35],目前市售的Li4Ti5O12材料,其容量可以達到160mAh/g左右。


國外有很多關于基于Li4Ti5O12的混合超級電容器的報道,Pasquier等報道了Li4Ti5O12為負極聚合物為正極的雜電容器[36]。Rambabu課題組嘗試以活性炭為正極,LiCrTiO4為負極,組裝非水體系不對稱混合超級電容器[37]。其電壓曲線在1—3V之間呈傾斜趨勢,平均電位接近2V,并在1mA/cm2的充放電電流下表現了59mAh/g的比容量。該體系還表現出卓越的循環壽命,經過1000次循環體系容量保持率為96%。然而,由于目前傳統方法制備的Li4Ti5O12材料顆粒較大(通常在1μm左右),且材料的本征電導率很低(10-13S/cm),并不適合在大功率輸出場合應用,因此,這類材料乃至于基于此類材料的不對稱電容器的發展與應用受到了一定制約。


本課題組創新性地將熔融鹽引入到Li4Ti5O12合成工藝之中[38],借助于低溫熔融的LiCl為熔鹽,在反應過程中提供一個液相反應環境,使得TiO2原料和反應鋰鹽得以充分接觸,促進了反應進行,縮短了反應時間。而且在整個反應過程中LiCl熔鹽為反應惰性,并不參與化學嵌鋰反應,因此可以確保最終產物為化學計量比的Li4Ti5O12。我們在最優化合成條件(LiCl/TiO2=16/1,煅燒溫度750℃,處理時間1h)下得到的Li4Ti5O12材料,其顆粒在100nm左右,容量約為159mAh/g。將此材料與活性炭配對組裝成不對稱電容器進行測試,其倍率性能遠遠優于應用傳統方法合成的大顆粒Li4Ti5O12所組裝的電容器體系,其在130C大電流倍率下放電,仍保有50%左右的初始容量,而以大顆粒Li4Ti5O12為負極的電容器,在50C時的容量維持率已經低于50%。


同時本課題組率先提出改良的Li4Ti5O12固相合成方法[39]。通過碳包覆方法預處理TiO2原料,使其表面均勻包覆一層導電炭,繼而將該材料混合以化學計量比的鋰鹽,在惰性氣氛下高溫固相煅燒制備得到樣品。由于碳層在惰性氣氛下的穩定性,將反應原料顆粒互相隔開,避免材料由于高溫處理而燒結導致顆粒增大。最終得到的產物,其粒度在幾十納米左右;由于炭層的高導電性,最終得到的Li4Ti5O12材料也具備較高的電子導電性;由于該方法的可操作性與簡便性,具備一定的量產前景。該方法為我們提供了一種全新的合成制備途徑,并可以延伸應用于其他一些鋰離子嵌入化合物的制備合成過程之中。我們將自制的碳包覆納米Li4Ti5O12作為負極,與商用活性炭配對組裝成不對稱電化學電容器。組裝得到的AAA電容器體系,其能量密度可以達到6Wh/kg,兩倍于目前的活性炭/活性炭雙電層電容器(EDLC),其倍率特性更為出色,在40C時的容量維持率仍有62%。


對于超級電容器體系的電解液來說主要分為水體系以及非水體系,水系電解質中電容器的工作電壓僅僅局限在1.2V以下,而在非水體系中由于考慮循環壽命以及電解液安全問題也控制在2.7V以下。然而較高的能量密度取決于電容器的電容以及工作電位的提高。為了滿足以上兩點就需要開發新體系的混合電容器。2006年YoShio等[21]發現,在高于一定高電位時,某些石墨化碳與陰離子產生嵌入反應,以這種石墨代替無定形的活性炭作為正極,活性炭為負極組裝成有機電解質體系混合超級電容器。在充放電過程中,石墨正極發生陰離子的嵌入脫出反應,同時負極發生陽離子的吸附脫附反應。


該體系的工作電壓范圍為2—3.5V,比能量可達15Wh/kg,首3圈的充放電性能如圖4所示。當負極與正極的質量比增加時,體系的比容量增加,但循環壽命下降,為了得到好的循環壽命,正極的利用率應控制在70mAh/g以下。當采用不同的電解液時,陽離子種類不同將對活性炭負極產生影響,進而影響整個混合體系的性能。目前,該體系正在產業化的過程中。


3.4鋰離子電池碳材料/活性炭混合電化學超級電容器


鋰離子電容器(LIC)[40]是一種混合型超級電容器,正極采用類似于EDLC電極材料的活性炭,負極采用鋰離子電池負極碳材料。通過金屬Li在充電過程中的預摻雜降低負極電位,由于負極材料比電容明顯高于正極材料比電容,因此在放電過程負極電位仍舊能夠保持在較低的電位,從而提高混合超級電容器的工作電壓。JM能源公司已經將這種鋰離子電容器組裝測試,并得到了較好的結果:該超級電容器可在較寬的溫度范圍內工作(-20℃—70℃),工作電壓范圍在2.2V—3.8V,平均工作電壓達到3.0V,能量密度達到了14Wh/kg、25Wh/L的較高水平,同時具有較好的倍率效果,有望進一步產業化生產。


3.5水系鋰離子電池材料/活性炭混合電化學超級電容器


總觀電化學雙層電容器和現有報道的混合型電化學超電容器,存在著一個共同的問題,這就是在充電過程中,電解質溶液的陰陽離子分離,造成電容器內阻增大,為克服這個問題,需要加入大量電解質溶液,導致電容器比能量降低,同時這個原因也使得現有電容器固態化和半固態化困難。Zheng[28]在J.Electrochem.Soc.雜志提出了估算電容器最大比能量密度的模型,并計算現有報道的電容體系的最大比能量和充電過程由于離子分離所需的最少電解質量。如果活性物質的重量(包括正負極電極材料和電解質溶液)占整個電容器總重量的40%,現有電容器的比能量密度最大能達到20Wh/kg。上述體系也存在一些問題,AC/Ni(OH)2采用Ni(OH)2作正極材料,但Ni(OH)2倍率特性較差,影響電容器的比功率。有機電解質溶液系Li4Ti5O12/AC雖然具有高的工作電壓,由于采用的有機電解質溶液電導較低,大電流充放電性能較差,另外由于采用易燃有毒性的有機電解質溶液,存在安全性的問題,并且由于需要在無水條件下操作,制造成本較高。


3.5.1活性炭/錳酸鋰混合電化學超級電容器


為了解決上述問題,本課題組發明了一種新型混合型水系鋰離子電池/電容器,這種電化學超電容器將離子嵌入-脫嵌機制與電化學超電容器由離子吸附產生的雙電層機制協調組合于一個儲能器件中[22—24]。正極采用含有鋰離子的嵌入化合物材料,負極采用高比表面的活性炭、介孔碳或碳納米管等,電解液采用含鋰離子、或者其他堿金屬、堿土金屬、稀土金屬、鋁或鋅的一種或幾種離子的混合物的水溶液。其充放電過程只涉及一種離子在兩電極間的轉移,而電解液主要充當離子導體的作用,工作原理類似于鋰離子電池,因此也叫搖椅式電容器。其充放電過程與常規的電化學雙電層超級電容器(EDLCs)以及其他見諸報道的陰陽離子分離、電解液損耗的混合超級電容器的電化學行為有很大的不同(如圖5),因此具有較高的比能量,并且有利于電容器固態化和半固態化。


新型混合型水系鋰離子電池/電容器具有比能量和非常長的循環壽命,LiMn2O4,LiCoO2和LiCo1/3Ni1/3Mn1/3O2都可作為該體系的正極,其中LiMn2O4在不同pH值溶液中都表現出穩定的電化學性能,而LiCoO2和LiCo1/3Ni1/3Mn1/3O2在水溶液中的穩定性隨著溶液pH值的升高而升高,這可能與溶液中質子的不可逆嵌入有關。三種混合體系AC/LiMn2O4、AC/LiCoO2和AC/LiCo1/3Ni1/3Mn1/3O2的能量密度是接近的;AC/LiCoO2體系具有較好的功率特性,但其循環性能較差;AC/LiCo1/3Ni1/3Mn1/3O2體系具有較好的循環壽命,但其功率密度較差。綜合各個方面的參數比較,AC/LiMn2O4體系的綜合性能最佳,具有產業化的前景,采用活性炭負極、尖晶石型錳酸鋰正極和2MLi2SO4水溶液電解質組成的混合型電容器(AC/LiMn2O4)其最大耐壓為1.8V,平均工作電壓為1.3V,單從電容器的活性物質包括正負極活性材料和電解質溶液計算,新型AC/LiMn2O4的最大比能量為54Wh/kg,高于現有體系(AC/Ni(OH)2為51Wh/kg,AC/Li4Ti5O12為50Wh/kg,AC/AC有機電解液體系為9Wh/kg,AC/AC水溶液電解液為7Wh/kg),實際電容器估算比能量為15Wh/kg。現有實驗表明循環20000次,容量維持率大于95%,是普通二次電池的10倍以上,并且具有大功率、安全、低成本和無環境污染的特點。從性能、成本和環境影響的綜合面來分析,新型混合型水系鋰離子電池/電容器的綜合性能超過現有任何一種電容器,因此具有很大的商業化前景。特別適合于作為電動汽車的動力電源。


3.5.2 LiTi2(PO4)3/MnO2(活性炭)混合電化學超級電容器


近期本課題組報道了以MnO2為正極,碳包覆的LiTi2(PO4)3為負極,1MLi2SO4為電解液組成的水系不對稱混合超級電容器[41]。其電壓曲線在0.7—1.9V之間呈傾斜趨勢,平均電位為1.3V,并表現了36mAh/g的比容量,較大的能量密度達到47Wh/kg(按電極活性物質總重量計算)。該體系還表現出較好的循環壽命,在10mA/cm2充放電的條件下,經過1000次以上循環,該體系容量保持率為80%。該混合超級電容器體系表現了優良的倍率性能,相比較在200W/kg的功率密度下能量密度為43Wh/kg,在大倍率1000W/kg下進行充放仍得到25Wh/kg的能量密度。


在此基礎上,嘗試以活性炭為正極,碳包覆的LiTi2(PO4)3為負極,1MLi2SO4為電解液組成的水系不對稱混合超級電容器[42]。其電壓曲線在0.3—1.5V之間呈傾斜趨勢,平均電位為0.9V(如圖6),并表現了30mAh/g的比容量,能量密度達到


27Wh/kg(按電極活性物質總重量計算)。該體系還表現出卓越的循環壽命,在10mA/cm2充放電的條件下,經過1000次以上循環,該體系容量保持率為85%。然而該混合超級電容器體系較MnO2/碳包覆的LiTi2(PO4)3混合電容器體系表現了更加優良的倍率性能,相比較在200W/kg的功率密度下能量密度為24Wh/kg,在大倍率1000W/kg下進行充放仍得到15Wh/kg的能量密度。


3.6活性炭/金屬氧化物混合電化學超級電容器


近年來,利用金屬氧化物發生氧化還原反應而產生的法拉第準電容進行能量儲存的電化學電容器引起了科研工作者的極大興趣[43,44]。


3.6.1活性炭/RuO2·H2O體系


由于RuO2·H2O具有高的比容量,因而是一種良好的電極材料。正極采用RuO2·H2O,負極采用活性炭,電解液采用H2SO4,制得的混合電容器的比容量達770F/g,比能量達26.7Wh/kg[45],但是因為釕的價格昂貴,它的應用受到了一定的限制。制備高比表面積的RuO2以提高材料的利用率、合成RuO2與其他金屬氧化物的復合材料以減少RuO2的用量、尋找廉價金屬氧化物以替代稀貴金屬等成為近幾年的研究熱點。目前已經合成了RuO2與MoOx、VOx和Co3O4等復合的氧化物材料。Evans等[46]將80%的無定形RuO2和20%的炭黑混合,制成薄膜電極,其比容量達到570F/g,在200℃下將薄膜沉積在鉭基體上,最大比容量可達590F/g,循環8×105次,容量變化不明顯。以RuO2等貴金屬氧化物為電極材料的準電容器的研究較多,但其價格昂貴且有毒,因此在商品化方面存在困難[47]。鈷、錳、鎳的氧化物具有與RuO2相似的性質,它們資源豐富價格便宜,是較好的替代RuO2的超級電容器電極材料[48,49]。


3.6.2活性炭/NiO體系


由于鎳和釕具有類似的電化學性質,用其制得的電容器電壓比活性炭雙電層電容器的電壓高1倍。NiO的制備方法不同,制得的電容器的性能也有很大差別。將其作為正極,與活性炭負極組成非對稱型超級電容器,正、負極活性物質的質量比為1∶3,工作電流密度為200mA/g時,比容量達71.5F/g[50]。


3.6.3活性炭/MnO2體系


據文獻報道MnO2比電容高達698F/g[51],Fe3O4膜為100F/g[52],但由于其用溶膠-凝膠浸漬法制備的薄膜電極用于超級電容器時,只有當膜層很薄時才具有高的質量比電容,因為集流體單位面積活性物質太少,導致體積比電容很小,難以在實際中應用。王先友課題組采用納米α-MnO2,活性炭為電極材料,組裝成混合型超級電容器[53],α-MnO2單電極比電容可達237F/g,混合電容器工作電壓高達1.5V,并且具有良好的大電流放電性能和較好的循環壽命,400圈循環后容量可以保持97%,并且具有極低的自放電率。也有研究者用活性炭作負極,用納米MnO2水合作正極的碳錳混合超級電容器,其雙電極比容量能達到42.5F/g[54,55]。混合超級電容器與一般超級電容器相比,其工作電壓窗較寬,比能量密度較大。


3.6.4活性炭/Fe3O4體系


王成揚課題組研究了以納米Fe3O4和活性炭為電極材料的超級電容器[52],混合電容器的工作電壓可達到1.2V,電流密度為0.5mA/cm2時,電容器的能量密度達到9.25Wh/kg。


3.6.5活性炭/PbO2混合電化學超級電容器


Volfkovich等報道AC/PbO2混合電化學超級電容器(HESC),以碳布(1000—2500m2/g)作負極,以小型PbSO4-PbO2極化電極為正極,采用多孔聚合物隔膜和硫酸電解液,其能量密度達到18.5W·h/kg[56]。為了使AC/PbO在極化電極模式下工作,必須選擇合適的活性材料質量比使正負極容量相匹配,充放電曲線只有在電流不太高的情況下才具有線形特征。HESC在放電過程中電解液體積減少5%—20%,電解質濃度下降15%—50%,在PbSO4-PbO2電極上發生液-固反應,使得固相體積膨脹,因此其內阻也在不斷發生變化。分析測試表明,有少量鉛遷移至負極,在活性炭表面沉積出0.5—2mg/cm2金屬鉛,導致負極容量增大而漏電流減小。HESC可作為動力電源用于小型電動車、閃光燈、便攜式儀器等。


3.7活性炭/聚合物混合超級電容器


導電聚合物電極電容器最大的優點是可以在高電壓下工作(3.0—3.2V),可彌補過渡金屬氧化物系列工作電壓不高的缺點,代表著超級電容器電極材料的一個發展方向。目前應用最廣的導電聚合物是聚噻吩及其各種衍生物。聚3-甲基噻吩(PMeT)n/p型摻雜的超級電容器(陽極是p型摻雜PMeT,陰極是活性炭),相對于雙電層電容器,它具有較低的放電容量,最大容量一般為40F/g左右[57],但由于其有較高的放電電壓,所以可滿足高電壓領域的要求。聚苯胺具有很大的法拉第電容,是一種良好的電極材料。Laforgue等[58]用p型摻雜聚苯胺作為正極材料,活性炭作為負極材料,6.0mol/LKOH溶液作為電解液,制成混合電容器,其比容量達380F/g,循環壽命達4000次,在1.0—1.6V之間,比能量達到18Wh/kg,比功率達到1.25kW/kg。另外,聚吡咯、聚對苯和聚并苯等均可用作超級電容器的電極材料。


4總結與展望


綜上所述,混合型電化學超級電容器是一種介于超級電容器和二次電池之間的一種非常有前景的儲能裝置,是混合電動車等的理想電源。相比于雙電層電容器,其能量密度有利于顯著的提高,然而同時也存在一些問題:雖然其功率密度高于二次電池,但相比于傳統超級電容器來說,并沒有達到理想的功率密度,在大電流充放時仍有一定的容量衰減;并且由于二次電池電極的壽命及體相反應安全性的限制,混合型超級電容器的循環性能和安全性能也受到一定影響。電極材料作為決定電容器性能的關鍵因素之一,是目前研究的重點。因此開發具有高比電容量、高工作電壓、大比功率以及長循環壽命的復合電極材料以提高混合型超級電容器的能量密度和功率密度是今后努力的方向。


參考文獻


[1]Conway B E.Electrochemical Supercapacitors,New York:Kluwer,Academic/Plenum Publishers,1999


[2]Conway B E.J.Electrochem.Soc.,1991,138(6): 1539—1548


[3]Zheng J P,Jow T R.J.Electrochem.Soc.,1995,142(1):L6—L8


[4]Huggins R A.Solid State Ionics,2000,134 (1/2): 179—195


[5]南俊民(Nan J M),楊勇(Yang Y),林祖賡(Lin Z G).電源技術(Chinese Journal of Power Sources),1996,20(4): 152—156


[6]Faggioli E,Rena P,Danel V.J.Power Sources,1999,84(2):261—269


[7]Chu A,Braatz P.J.Power Sources,2002,112(1): 236—246


[8]Shukla A K,Aricò A S,Antonucci V.Renewable and Sustainable Energy Reviews,2001,5(2): 137—155


[9]K tz R,Carlen M.Electrochim.Acta,2000,45(15/16):2483—2498


[10]Conway B E,Pell W G.J.Power Sources,2002,105 (2):169—181


[11]Pell W G,Conway B E.J.Power Sources,2001,96(1): 57—67


[12]Zheng J P.J.Electrochem.Soc.,1995,142(8): 2699—2703


[13]Zheng J P.J.Electrochem.Soc.,1995,143(3): 1068—1072


[14]Sikha G,White R E,Popov B N.J.Electrochem.Soc.,2005,152: A1682—A1693


[15]Wang Y G,Cheng L,Xia Y Y.J.Power Source,2006,153:191—196


[16]Khomenko V,Raymundo-Pinero E,Beguin F.J.Power Source,2006,153: 183—190


[17]Cheng L,Li H Q,Xia Y Y.J.Solid State Electrochem.,2006,10: 405—410


[18]Nohara S,Toshihide A A,Wada H,Furukawa N,Inoue H,Sugoh N,Iwasaki H,Iwakura C.J.Power Sources,2006,157:605—609


[19]Amatucci G G,Badway F,Pasquier A D,Zheng T.J.Electrochem.Soc.,2001,148: A930—A939


[20]Wang H Y,Yoshio M,Electrochem.Commun.,2006,8:1481—1486


[21]Yoshio M,Nakamura H,Wang H Y.Electrochemical and Solid State Letters,2006,9: A561—A563


[22]Wang Y G,Xia Y Y.J.Electrochem.Soc.,2006,153:A450—A454


[23]Wang Y G,Luo J Y,Wang C X,Xia Y Y.J.Electrochem.Soc.,2006,153: A1425—A1431


[24]Wang Y G,Lou J Y,Wu W,Wang C X,Xia Y Y.J.Electrochem.Soc.,2007,154: A228—A234


[25]Wang Y G,Wang Z D,Xia Y Y.Electrochim.Acta,2005,50:5641—5646


[26]田志宏(Tian Z H),趙海雷(Zhao H L),李明(Li M),王治峰(Wang Z F),仇衛華(Qiu W H).電池(Battery Bimonthly),2006,36(6),469—471


[27]Stan Zurek.Ragone plot showing energy density vs.power density for various devices.Vector conversion from Image:Supercapacitors chart.png,from Maxwell Technologies.[2006-06- 12].


[28]Zheng J P.J.Electrochem.Soc.,2003,150: A484—A492


[29]Varakin I N,Kiementov A D,Litvineko S V,Proceedings of the 8th International Seminar on Double-layer Capacitors and Similar Energy Storage Devices,Deerfield Beach,FL,1998


[30]劉志祥(Liu Z X),張密林(Zhang M L),閃星(Shan X).電源技術(Chinese Journal of Power Sources),2001,25(5): 354—356


[31]Wang Y G,Yu L,Xia Y Y.J.Electrochem.Soc.,2006,153:A743—A748


[32]Singhal A,Skandan G,Amatucci G.J.Power Sources,2004,129: 38—44


[33]Kavan L,Prochazka J,Spitler T M.J.Electrochem.Soc.,2003,150: A1000—A1007


[34]Kanamura K,Umegaki T,Naito H.J.Appl.Electrochem.,2001,31: 73—78


[35]Ohzuku T,Ueda A,Yamamoto N.J.Electrochem.Soc.,1995,142: 1431—1435


[36]Pasquier D A,Laforgue A,Simon P.J.Power Sources,2004,125(1): 95—102


[37]Rao C V,Rambabu B.Solid State Ionics,2010,181: 839—843


[38]Cheng L,Liu H J,Zhang J J,Xiong H M,Xia Y Y.J.Electrochem.Soc.,2006,153 (8): A1472—1477


[39]Cheng L,Li X L,Liu H J,Xiong H M,Zhang P W,Xia Y Y.J.Electrochem.Soc.,2007,154: A228—A234


[40]Ando N,Taguchi M,Marumo C.Proceedings of 2010 International Conference on Advanced Capacitors,Kyoto Terrsa,Japan,2010


[41]Luo J Y,Liu J L,He P,Xia Y Y.Electrochim.Acta,2008,53: 8128—8133


[42]Luo J Y,Xia Y Y.J.Power Sources,2009,186: 224—227


[43]Nam K W,Yoon W S,Kim K B.Electrochim.Acta,2002,47(19): 3201—3209


[44]汪形艷(Wang X Y),王先友(Wang X Y),黃偉國(Huang WG),湘潭大學自然科學學報(Natural Science Journal of Xiangtan University),2004,26 (3): 287—290


[45]Jow T R,Zheng J P,Ding S P.The 7th International Seminaron Double Layer Capacitors and Similar Energy Storage Devices Deerfield Beach,FL,1997


[46]Evans D,Zheng J P,Roberson S.Proceedings of the 9th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices,Deerfidd Beach,Florida,1999


[47]汪形艷(Wang X Y),王先友(Wang X Y),黃偉國(Huang WG).電池(Battery Bimonthly),2004,34 (3): 192—193


[48]Kim H K,Seong T Y,Lim J H.J.Power Sources,2001,102(1/2): 167—171


[49]Hu C C,Tsou T W.Electrochem.Commun.,2002,4(2):105—109


[50]莊凱 (Zhuang K),梁逵 (Liang K),李兵紅(Li B H).西華大學學 報(自 然 科 學 版)(Journal of Xihua University(Natural ScienceEdition)),2006,25(1):6—7


[51]Pang S C,Anderson M A,Chapman T W.J.Electrochem Soc.,2000,147 (2): 444—450


[52]杜嬛(Du X),王成揚(Wang C Y),陳明鳴(Chen M M),焦旸(Jiao Y).無機材料學報( Journal of Inorganic Materials),2008,23(6): 1193—1198


[53]汪形艷(Wang X Y),王先友(Wang X Y),侯天蘭 Hou TL),李俊(Li J),黃慶華(Huang Q H).化工學報(Chemical Industry and Engineering Progress),2006,57(2): 442—447


[54]閃星(Shan X),張密林(Zhang M L),董國君(Dong G J).電源技術(Chinese Journal of Power Sources),2002,26(2): 92—94


[55]Hong M S,Lee S H,Kim S W.Electrochem.Solid-State Lett.,2002,5(10): A227—A230


[56]Volfkoviceh Y M,Shmatko P A.Proceedings of the 8th International Seminar on Double-layer Capacitors and Similar Energy Storage Devices,Deerfield Beach,FL,1998


[57]Arbizzani C,Mastragostino M,Soavi F.J.Power Sources,2001,l00(1/2):164—170


[58]Laforgue P,Simon P,Fauvarque J F.J.Eleetrochem.Soc.,2003,150(5):A645—A651


相關產品

  1. <form id="ejezu"></form>

  2. 主站蜘蛛池模板: 国产又爽又黄无码无遮挡在线观看 | 窝窝午夜看片| 性做久久久久久久免费看| 阳江市| 国产成人精品一区二区三区免费| 精品国产乱码久久久久久1区2区| 开封市| 荔浦县| 冷水江市| 色噜噜狠狠色综合日日| 津南区| 国内精品国产成人国产三级| 欧美性猛交xxxx乱大交蜜桃| 米奇影视第四色| 日本不卡一区| 国产无遮挡又黄又爽又色| 南雄市| 综合天堂av久久久久久久| 亚洲中文字幕无码爆乳av| 和林格尔县| 成全在线观看免费完整版| 灌云县| 久久er99热精品一区二区| 怀柔区| 女女互磨互喷水高潮les呻吟| 国产熟妇久久777777| 九一九色国产| 自拍偷自拍亚洲精品播放| 三人成全免费观看电视剧| 国产精品一区二区久久国产| 山阳县| 国精一二二产品无人区免费应用| 来安县| 玩弄人妻少妇500系列| 成人做爰免费视频免费看| 石泉县| 久久99精品国产麻豆婷婷洗澡| 国产亚洲精品久久久久久无几年桃 | 人妻奶水人妻系列| 无码一区二区三区| 狂野少女电视剧免费播放| 泸溪县| 独山县| 公安县| 内江市| 张家界市| 健康| 农村少妇野外a片www| 黑人巨大精品欧美一区二区| 两当县| 云南省| 邢台县| 精品国内自产拍在线观看视频| 肉大捧一进一出免费视频| 无码人妻丰满熟妇精品区| 日韩高清国产一区在线| 久久综合久色欧美综合狠狠| 商南县| 少妇性bbb搡bbb爽爽爽欧美| 大地资源高清在线视频播放| 日本免费视频| 高台县| 欧美裸体xxxx极品少妇| 国产精品爽爽久久久久久| 精品国产乱码一区二区三区| 巴青县| 国产精品扒开腿做爽爽爽视频| 中文字幕无码精品亚洲35| 国产精品无码久久久久久| 国产人妻人伦精品1国产丝袜| 靖边县| 国精产品一区一区三区免费视频| 日本高清视频www| 盐津县| 丝袜 亚洲 另类 欧美 变态| 舒兰市| 欧美日韩精品| 精品无码一区二区三区久久| 国产真实乱人偷精品视频| 青海省| 英吉沙县| 湘西| 通化市| 宁海县| 亚洲午夜精品一区二区| 井研县| 国产精品丝袜黑色高跟鞋| 少妇熟女视频一区二区三区| 国产猛男猛女超爽免费视频| 欧美乱码精品一区二区三区| 洛宁县| 无码人妻一区二区三区精品视频| 定兴县| 琪琪电影午夜理论片八戒八戒| 日韩一区二区a片免费观看| 欧美午夜精品一区二区蜜桃| 欧美性大战xxxxx久久久| 多伦县| 人人妻人人玩人人澡人人爽| 狠狠综合久久av一区二区| 国产美女裸体无遮挡免费视频| 抚宁县| 久久精品99国产精品日本| 怡红院av亚洲一区二区三区h| 欧美激情在线播放| 新泰市| 国产精品一品二区三区的使用体验| 国产精品伦一区二区三级视频| 西西人体做爰大胆gogo| 德阳市| 吉木乃县| 雷波县| 雷波县| 阳朔县| 凤庆县| 遂溪县| 怀化市| 枣阳市| 莲花县| 极品新婚夜少妇真紧| 国产精品天天狠天天看| 三年片免费观看了| 欧美三根一起进三p| 田阳县| 安泽县| 车险| 精品免费国产一区二区三区四区| 新泰市| 新巴尔虎左旗| 国产女人高潮毛片| 精品久久久久久人妻无码中文字幕| 宜春市| 99久久99久久精品国产片果冻| 青冈县| 久久久久久久极品内射| 双腿张开被9个男人调教| 亚洲无av在线中文字幕| 国精产品一区二区三区| 中国免费看的片| 旬阳县| 国产日韩欧美| 容城县| 新建县| 积石山| 午夜精品国产精品大乳美女| 日本熟妇色xxxxx日本免费看| 三叶草欧洲码在线| 精品夜夜澡人妻无码av| 欧美一区二区三区成人片在线 | 一区二区国产精品精华液 | 久久久久99精品成人片三人毛片| 国产熟妇搡bbbb搡bbbb搡| 在线天堂www在线国语对白| 綦江县| 天峻县| 亚洲精品喷潮一区二区三区| 久久精品人妻一区二区三区 | 伊吾县| 成人欧美一区二区三区黑人免费 | 玉溪市| 成人午夜视频精品一区| 国产无套精品一区二区| 嫩江县| 成人h动漫精品一区二区无码| 大地资源网在线观看免费动漫| 国产超碰人人模人人爽人人添| 欧美高清精品一区二区| 欧美成人aaa片一区国产精品 | 无码视频在线观看| 麻豆国产av超爽剧情系列| 中文字幕一区二区三区乱码| 欧美亚韩一区二区三区| 久久综合久久鬼色| 香蕉久久国产av一区二区 | 亚洲精品国产精品国自产观看| 人妻体体内射精一区二区| www国产亚洲精品久久网站| 欧美一区二区三区成人片在线| 国产精品欧美一区二区三区| 天天干天天射天天操| 久久久久99精品成人片直播| 精品夜夜澡人妻无码av| 三年大全免费大片三年大片第一集| 精品无码久久久久久久久| 人人妻人人澡人人爽国产一区| 熟妇高潮喷沈阳45熟妇高潮喷| 彰化县| 新兴县| 99无码熟妇丰满人妻啪啪| 望奎县| 中文无码精品一区二区三区| 精品无码一区二区三区的天堂| 天堂在线中文| 巴里| 香蕉久久国产av一区二区| 安塞县| 中文字幕在线播放| 国产成人精品三级麻豆| 金平| 类乌齐县| 唐河县| 平昌县| 云浮市| 中国极品少妇xxxxx| 国产麻豆剧果冻传媒白晶晶 | 精品无人区无码乱码毛片国产| 无码一区二区三区| 国产情侣久久久久aⅴ免费 | 杭锦后旗| 99国产精品久久久久久久成人热| 六安市| 国产偷窥熟女精品视频大全| 成全在线观看免费完整版| 人妻洗澡被强公日日澡| 青冈县| 国产精品毛片va一区二区三区| 郯城县| 欧美一区二区| 林州市| 丰满人妻妇伦又伦精品国产| 白沙| 51国产偷自视频区视频| 尤物视频网站| 国产在线视频一区二区三区| 中文字幕在线免费看线人| 国产欧美一区二区精品性色| 精品国产av色一区二区深夜久久| 骚虎视频在线观看| 理塘县| 377人体粉嫩噜噜噜| 新化县| 日本va欧美va精品发布| 少妇真人直播免费视频| 影音先锋男人站| av无码一区二区三区| 防城港市| 国产午夜精品一区二区三区嫩草| 国产成人精品白浆久久69 | 英吉沙县| 成人欧美一区二区三区在线观看 | 欧美性xxxxx极品娇小| 临桂县| 资中县| 郓城县| 国产欧美日韩| 久久中文字幕人妻熟av女蜜柚m| 大竹县| 美女视频黄是免费| 国产精品久久久久野外 | 天天爽天天爽夜夜爽毛片 | 桂林市| 三人成全免费观看电视剧高清 | 东乡| 成全电影大全在线观看国语版高清| av免费网站在线观看| 92久久精品一区二区| chinese熟女老女人hd| 久久久成人毛片无码| 大地影院免费高清电视剧大全 | 日韩电影一区二区三区| 性一交一乱一乱一视频| 麻豆国产av超爽剧情系列| 贺兰县| 国产国语老龄妇女a片| 免费观看黄网站| 沁水县| 我们的2018在线观看免费高清| 泾川县| 一边摸一边抽搐一进一出视频 | 久久午夜无码鲁丝片| 国产在线视频一区二区三区| 精产国品一二三产区m553麻豆| 格尔木市| 扶余县| 宁化县| 邳州市| 凤阳县| 喀喇沁旗| 少妇高潮灌满白浆毛片免费看| 国产午夜视频在线观看| 少妇脱了内裤让我添| 波多野结衣网站| 一个人看的视频www| 池州市| 集贤县| 国产精品久久久久久久久动漫 | 瓦房店市| 人妻体内射精一区二区| 少妇特黄a一区二区三区| 大宁县| 国产精品无码免费专区午夜| 日本护士毛茸茸| 国产农村妇女aaaaa视频| 无码视频在线观看| 舒城县| 国产精自产拍久久久久久蜜| 波多野吉衣av无码| 鄂伦春自治旗| 成全动漫视频在线观看| 国产suv精品一区二区| 欧美日韩国产精品| 国偷自产视频一区二区久| 亚洲欧美日韩一区二区| 浦江县| 人妻夜夜爽天天爽三区麻豆av网站| 中国老熟女重囗味hdxx| 亚洲精品字幕| 页游| 精品久久久久久| 灯塔市| 一区二区三区视频| 吉林省| 少妇特黄a一区二区三区| 熟妇人妻一区二区三区四区| 护士人妻hd中文字幕| 女女互磨互喷水高潮les呻吟| 新津县| 辽阳市| 广灵县| 国产伦精品一区二区三区妓女下载| 人妻熟女一区二区三区app下载| 天堂国产一区二区三区| 聂拉木县| 兴安盟| 成年免费视频黄网站在线观看| 欧美黑人又粗又大高潮喷水| 永年县| 人妻洗澡被强公日日澡电影| 日韩精品一区二区三区| 保德县| 精品人妻无码一区二区三区四川人| 札达县| 天天躁日日躁狠狠躁av麻豆男男| 胶州市| 92久久精品一区二区| 无码少妇精品一区二区免费动态| 国产精品亚洲lv粉色| 蜜桃成人无码区免费视频网站| 郁南县| 少妇特殊按摩高潮惨叫无码| 久久精品国产成人av| 播放男人添女人下边视频| 兴国县| 玛纳斯县| 国产精品二区一区二区aⅴ污介绍| 少妇扒开粉嫩小泬视频| 华坪县| 精品黑人一区二区三区久久| 特级精品毛片免费观看| 精品国产乱码一区二区三区| 成人性生交大片免费看中文| 化州市| 宁阳县| 郁南县| 成全我在线观看免费观看| 鄂州市| 广德县| 精品人妻无码一区二区三区四川人| 人妻夜夜爽天天爽三区麻豆av网站| 南陵县| 看免费真人视频网站| 阿鲁科尔沁旗| 国产无套精品一区二区三区| av无码精品一区二区三区宅噜噜 | 波多野吉衣av无码| 国产亚州精品女人久久久久久| 特级西西人体444www高清大胆| 亚洲精品久久久久国产| 锡林郭勒盟| 国产欧美精品一区二区色综合 | 亚洲午夜精品久久久久久浪潮| 欧美不卡一区二区三区| 99久久99久久精品国产片果冻| 龙泉市| 日韩免费视频| 灌云县| 桃园县| 天美麻花果冻视频大全英文版| 国产午夜三级一区二区三| 男女无遮挡xx00动态图120秒| 国产成人精品免高潮在线观看| 福利视频在线播放| 湖南省| 国产成人无码一区二区在线观看 | 潞城市| 国产又粗又猛又黄又爽无遮挡| 亚洲精品鲁一鲁一区二区三区| 欧美人妻一区二区三区| 济源市| 超碰免费公开| 国产欧美日韩一区二区三区| 无码人妻丰满熟妇精品区| 国产午夜亚洲精品午夜鲁丝片| 静宁县| 苍溪县| 汶上县| 郎溪县| 护士人妻hd中文字幕| 定南县| 国产成人精品一区二区三区| 罗甸县| SHOW| 无码人妻少妇色欲av一区二区| 兰西县| 亚洲欧美一区二区三区在线| 平江县| 成人免费无码大片a毛片| 通化县| 国产精品久久久久久久久动漫 | 无码av免费精品一区二区三区| 天天躁日日躁aaaaxxxx| 国产香蕉尹人视频在线| 国产午夜精品一区二区三区| 97人妻精品一区二区三区| 国产精久久一区二区三区| 久久国产一区二区三区| 丰满岳乱妇一区二区三区| 阿图什市| 亚洲中文无码av在线| 国产情侣久久久久aⅴ免费| 亚洲国产精品久久久久婷蜜芽| 99久久人妻无码精品系列| 四川丰满少妇被弄到高潮| 中卫市| 中文字幕日韩人妻在线视频| 97精品超碰一区二区三区| 欧美激情性做爰免费视频| 清镇市| 孟村| 无码h肉动漫在线观看| 顺昌县| 和顺县| 利辛县| 枣阳市| 普兰店市| 卓资县| 无码视频一区二区三区| 句容市| 一本大道久久久久精品嫩草| 国产精品自产拍高潮在线观看| 乐平市| 亚洲色偷偷色噜噜狠狠99网| 清水县| 欧美无人区码suv| 亚洲精品久久久久久无码色欲四季 | 欧美午夜精品久久久久免费视| 妺妺窝人体色www在线下载| 鄱阳县| 精品乱码一区二区三四区视频| 亚洲中文无码av在线| 三年大片大全免费观看大全| 无码人妻丰满熟妇精品区 | 中文字幕人成人乱码亚洲电影| 中文成人在线| 亚洲精品乱码久久久久久不卡| 内射中出日韩无国产剧情| 无码人妻丰满熟妇区bbbbxxxx| 武城县| 精品人妻一区二区三区四区| 国产精品永久久久久久久久久| 三人成全免费观看电视剧高清| 人妻体内射精一区二区| 国产成人精品久久| 平凉市| 亚洲精品一区二区三区新线路| 午夜精品国产精品大乳美女| 精品国产乱码一区二区三区| 台江县| 色翁荡息又大又硬又粗又爽| 天气| 尚志市| 人与禽性动交ⅹxxx| 国产欧美熟妇另类久久久| 井陉县| 国产乱子伦精品无码码专区| 无码gogo大胆啪啪艺术| 平南县| 保康县| 上虞市| 成全影视在线观看第6季| 免费无码又爽又黄又刺激网站| 农安县| 成全影院电视剧在线观看| 资溪县| 午夜精品久久久久久| 榆树市| 国产草草影院ccyycom| 三门县| 欧美人与性动交g欧美精器| 洪泽县| 全部孕妇毛片丰满孕妇孕交| 莱西市| 久久精品www人人爽人人| 无码日本精品xxxxxxxxx| 灵璧县| 精品欧美一区二区三区久久久| 建昌县| 日本不卡一区二区三区| 精品少妇爆乳无码av无码专区| 99精品视频在线观看| 中文久久乱码一区二区| 永兴县| 亚洲中文无码av在线| 咸阳市| 精品久久久久久人妻无码中文字幕| 成人免费视频在线观看| 隆德县| 日本少妇高潮喷水xxxxxxx| 紫金县| 亚洲人成在线观看| 成全影视在线观看更新时间| 久久久天堂国产精品女人| 大战熟女丰满人妻av| 日韩精品一区二区在线观看| 国产精品毛片久久久久久久| 欧美丰满老熟妇aaaa片| 成全高清视频免费观看| 宜丰县| 霸州市| 无码人妻丰满熟妇区bbbbxxxx| 国产精品久久午夜夜伦鲁鲁| 男人的天堂在线视频| 夜夜躁狠狠躁日日躁| 1插菊花综合网| 广宗县| 欧美午夜精品一区二区三区电影| 锦屏县| 松江区| 天天躁日日躁狠狠躁av麻豆男男 | 盱眙县| 嫩江县| 欧美裸体xxxx极品少妇| 亚洲精品字幕| 最近免费中文字幕大全免费版视频| 磴口县| 精品一区二区三区免费视频| 激情五月综合色婷婷一区二区| 风流少妇按摩来高潮| 德格县| chinese熟女老女人hd| 久久国产劲爆∧v内射| 久久精品国产成人av| 国产农村妇女精品一二区| 国内老熟妇对白xxxxhd| 国产精品51麻豆cm传媒| 社会| 国产精品av在线| 永泰县| 舟曲县| 国产真人做爰毛片视频直播| 激情久久av一区av二区av三区 | 宝山区| 国精品无码人妻一区二区三区 | 成全视频观看免费高清中国电视剧| 伊金霍洛旗| 51国产偷自视频区视频| 大同县| 彭州市| 永宁县| 日本电影一区二区三区| 国产精品扒开腿做爽爽爽a片唱戏| 精品国产一区二区三区四区| 汨罗市| 特黄aaaaaaaaa毛片免费视频 | 太仆寺旗| 东莞市| 一区二区三区视频| 成全我在线观看免费观看| 安龙县| 日日噜噜噜夜夜爽爽狠狠| 南宁市| 国产精品无码专区| 99精品视频在线观看免费| 欧美午夜精品一区二区三区电影| 抚远县| 亚洲区小说区图片区qvod| 欧美成人一区二区三区| 日产电影一区二区三区| 97精品人人妻人人| 少妇又紧又色又爽又刺激视频| 东宫禁脔(h 调教)| 成人性做爰片免费视频| 临潭县| 欧美午夜理伦三级在线观看 | 信阳市| 亚洲国产精品18久久久久久| 美女视频黄是免费| 国产精品国产精品国产专区不卡| 卓资县| 欧洲熟妇色xxxx欧美老妇多毛| 成人h视频在线观看| 桐柏县| 日本少妇高潮喷水xxxxxxx| 庆元县| 泾阳县| 成人毛片18女人毛片免费| 秦皇岛市| 阜南县| 昭通市| 剑河县| 平凉市| 合江县| 增城市| 正阳县| 日日干夜夜干| 建宁县| 永久免费无码av网站在线观看| 久久久国产精品人人片| 成人精品一区二区三区电影| 欧美激情性做爰免费视频| 中国女人做爰视频| 久久久久99精品国产片| 莱州市| 极品新婚夜少妇真紧| 惠州市| 育儿| 成熟妇人a片免费看网站| 午夜福利视频| 国产精品久久久一区二区| 久久精品人妻一区二区三区| 肥老熟妇伦子伦456视频| 国产婷婷色一区二区三区| 盘锦市| 日韩成人无码| 五家渠市| 大地影院免费高清电视剧大全 | 中字幕一区二区三区乱码| 日韩精品毛片无码一区到三区| 欧美三根一起进三p| 无套内谢老熟女| 苏州市| 香蕉久久国产av一区二区| 莆田市| 四川丰满少妇被弄到高潮| 临邑县| 沙田区| 亚洲精品一区国产精品 | 久久av一区二区三区| 欧美老熟妇又粗又大| 孝感市| 青海省| 韩国三级中文字幕hd久久精品| 博客| 欧美午夜精品久久久久免费视| 99久久国产热无码精品免费| 奉贤区| 国产精品扒开腿做爽爽爽a片唱戏| 国产精品久久久久久久免费看 | 国产人成视频在线观看| 嘉鱼县| 唐河县| 中文字幕精品久久久久人妻红杏1| 天堂va蜜桃一区二区三区| 艳妇臀荡乳欲伦交换在线播放| 国产精品无码久久久久成人影院| 乐陵市| chinese熟女老女人hd| 艳妇臀荡乳欲伦交换在线播放| 131mm少妇做爰视频| 国产成人午夜高潮毛片| 成人网站免费观看| 国产乱码精品一品二品| 最好的观看2018中文| 初尝黑人巨砲波多野结衣| 亚洲色成人网站www永久四虎| 绍兴市| 国产良妇出轨视频在线观看| 中文字幕乱码人妻无码久久| 熟女丰满老熟女熟妇| 久久人人爽人人爽人人片| 激情久久av一区av二区av三区| 天天躁日日躁aaaaxxxx| 福州市| 无码国产伦一区二区三区视频| 平罗县| 无码一区二区三区免费| 日本不卡一区二区三区| 满城县| 陕西省| www夜片内射视频日韩精品成人| 中文字幕 人妻熟女| 科技| 长子县| 泉州市| 抚松县| 安徽省| 欧洲精品码一区二区三区免费看| 精品少妇一区二区三区免费观| 欧美freesex黑人又粗又大| 亚洲精品一区二三区不卡| 人妻[21p]大胆| 三年在线观看免费大全哔哩哔哩| jlzzzjlzzz国产免费观看| 97香蕉碰碰人妻国产欧美| 乐业县| 乐亭县| 日韩一区二区三区精品| 成人做爰视频www| 性久久久久久久| 亚洲日韩一区二区| 亚洲精品久久久久久无码色欲四季| 欧美高清精品一区二区| 亚洲欧美在线观看| 亚洲 激情 小说 另类 欧美| 精品久久久久久久久久久国产字幕| 宾川县| 国产精品久久久一区二区| 墨江| 老熟女高潮一区二区三区| 66亚洲一卡2卡新区成片发布| 广东省| 久久久国产精品人人片| 成人精品一区日本无码网| 麻豆国产一区二区三区四区| 99国产精品久久久久久久成人| 国产精品久久久久久亚洲色| 景宁| 69久久精品无码一区二区| 尼木县| 亚洲人成在线观看| 资讯| 肥老熟妇伦子伦456视频| 无码少妇一区二区| 中文字幕精品久久久久人妻红杏1| 本溪市| 耒阳市| 古蔺县| 谷城县| 昌图县| 久久99精品久久久久久琪琪| 中文字幕在线免费看线人| 亚洲熟妇av乱码在线观看| 云龙县| 大宁县| 日本边添边摸边做边爱| 宁武县| 少妇粉嫩小泬白浆流出| 开封市|